Processing math: 100%

๐Ÿ“š Study/AI 18

EasyOCR ์ปค์Šคํ…€ ๋ฐ์ดํ„ฐ์…‹์—์„œ finetuning ํ•˜๊ธฐ (3) - recognition model train

https://github.com/JaidedAI/EasyOCR/blob/master/custom_model.md EasyOCR/custom_model.md at master ยท JaidedAI/EasyOCRReady-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. - JaidedAI/EasyOCRgithub.com์œ„์˜ ๋งํฌ์ธ github์— ์–ด๋А ์ •๋„ ์ž์„ธํžˆ ์„ค๋ช…ํ•ด์ฃผ๊ณ  ์žˆ๋‹ค.๋‚˜์˜ ๊ฒฝ์šฐ์—๋Š” ์ผ๋‹จ detection์„ ๋ถ€๋ถ„์„ ๊ฑด๋“ค์ง€ ์•Š๊ณ , recognition ๋ถ€๋ถ„๋งŒ finetuningํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์„ธ์› ๋‹ค.(๊ทธ๋ฆผ์—..

๐Ÿ“š Study/AI 2025.05.29

EasyOCR ์ปค์Šคํ…€ ๋ฐ์ดํ„ฐ์…‹์—์„œ finetuning ํ•˜๊ธฐ (2) - pretrained weight๋กœ ๋จผ์ € ์‹คํ—˜

chatgptํ•œํ…Œ ๋ธ”๋กœ๊ทธ์— ์˜ฌ๋ฆด ocrํ•˜๊ธฐ ์ข‹์€ ์ด๋ฏธ์ง€๋ฅผ ๋งŒ๋“ค์–ด ๋‹ฌ๋ผ๊ณ  ํ–ˆ๋‹ค. import easyocrreader = easyocr.Reader(['en']) # this needs to run only once to load the model into memoryresult = reader.readtext("./EasyOCR/trainer/all_data/practice.png")result[([[125, 321], [793, 321], [793, 533], [125, 533]], 'STATION', 0.9997768703106611)] ๋‹ค์Œ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด๋ณด๋ฉด,(1) ๊ฒ€์ถœํ•œ bounding box์˜ ์œ„์น˜ (2) ๊ฒ€์ถœํ•œ text (3) Confidence Score์ด๋ ‡๊ฒŒ ์„ธ ๊ฐ’์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด ..

๐Ÿ“š Study/AI 2025.05.29

EasyOCR ์ปค์Šคํ…€ ๋ฐ์ดํ„ฐ์…‹์—์„œ finetuning ํ•˜๊ธฐ (1) - EasyOCR ๋ชจ๋ธ ๊ตฌ์กฐ

https://github.com/JaidedAI/EasyOCR GitHub - JaidedAI/EasyOCR: Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, ChinesReady-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. - JaidedAI/EasyOCRgithub.com EasyOCR์ด๋ž€?EasyOCR์€ PyTorch ๊ธฐ๋ฐ˜์˜ ์˜คํ”ˆ์†Œ์Šค OCR(Optical Character Recog..

๐Ÿ“š Study/AI 2025.05.29

Window์—์„œ PPOCRLabel ์‹คํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•

Installation and Run# 1. ๊ฐ€์ƒํ™˜๊ฒฝ ์ƒ์„ฑpython -m venv ppocr_env # 2. ๊ฐ€์ƒํ™˜๊ฒฝ ํ™œ์„ฑํ™” ๋ฐ ํ™˜๊ฒฝ ์„ค์น˜ (Windows)ppocr_env\Scripts\activatepython -m pip install --upgrade pippython -m pip install paddlepaddle python -m pip install PPOCRLabel# 3. PPOCRLabel ์ฝ”๋“œ ๋‹ค์šด๋กœ๋“œgit clone https://github.com/PaddlePaddle/PPOCRLabel.gitcd PPOCRLabel# 4. ์‹คํ–‰python PPOCRLabel.pyRun RecognitionPPOCRLabel์˜ AutoRecognition ์‚ฌ์šฉ ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.์šฐ์ƒ๋‹จ Fi..

๐Ÿ“š Study/AI 2025.05.11

Diffusion Model ์ˆ˜ํ•™์ด ํฌํ•จ๋œ tutorial (1/2)

๋ณธ ๊ธ€์€ ์•„๋ž˜ ์˜์ƒ์„ ๋ณด๊ณ  ์ •๋ฆฌํ•˜์˜€์Šต๋‹ˆ๋‹ค.https://www.youtube.com/watch?v=uFoGaIVHfoE   GAN์˜ ์„ฑ๋Šฅ์„ ์ด๊ฒจ๋ฒ„๋ฆฐ Diffusion  ์ตœ์ดˆ์˜ ์—ฐ๊ธฐ๋ฅผ ์ฐพ์•„๋ณด๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ!   ์‹ค์ œ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋ถ„์ž๊ฐ€ ํ™•์‚ฐ๋  ๋•Œ,๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ ์•ˆ์— ๋‹ค์Œ ์œ„์น˜๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค.  ์‹œ์ž‘ ์ด๋ฏธ์ง€์—์„œ noise๋ฅผ ์ถ”๊ฐ€ํ•ด์„œ ์ „์ฒด๋ฅผ noise๋กœ ๋งŒ๋“ค์–ด๋ฒ„๋ฆฌ๋Š” forward์™€noise๋ฅผ ์ค„์—ฌ๋‚˜๊ฐ€๋ฉด์„œ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” reverse๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด๋•Œ, ์œ„์—์„œ ์„ค๋ช…ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ ์ด๋ฏธ์ง€์—์„œ noise๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ๊ณผ์ •, ์ฆ‰ ์—ฐ๊ธฐ๊ฐ€ ํผ์ ธ ๋‚˜๊ฐ€๋Š” ๊ณผ์ •์€ ๋งค์šฐ ์‰ฝ๋‹ค.๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ๋ฐ˜๋Œ€์˜ ๊ณผ์ •์ธ reverse๋Š” ์–ด๋ ต๋‹ค.   ์•ž์„œ ๋ถ„์ž๊ฐ€ ํ™•์‚ฐ๋  ๋•Œ ์„ค๋ช…ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, noise๊ฐ€ ์ถ”๊ฐ€๋˜๋Š” ํ˜•์‹์€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋‹ค.$q(x_{t} |..

๐Ÿ“š Study/AI 2024.07.17

[๋”ฅ๋Ÿฌ๋‹๊ณผ ์„ค๊ณ„] GAN

# GAN  VAE๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ๊ฒฝํ—˜์ ์ด ์•„๋‹Œ ์ˆ˜ํ•™์ ์œผ๋กœ ์ ‘๊ทผํ•˜๋‹ค๋ณด๋‹ˆ๊นŒ ๋„ˆ๋ฌด ๋ณต์žกํ•ด์„œ,๊ทธ๋ƒฅ samplingํ–ˆ์„ ๋•Œ ๊ทธ๋Ÿด ๋“ฏํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค๊ฒŒ๋งŒ ๋งŒ๋“ค๋ฉด ์•ˆ๋ ๊นŒ?explicit density functionํ•˜์ง€ ๋ง๊ณ  game theory๋ฅผ ์‚ฌ์šฉํ•ด๋ณด์ž! game theory: 2-player game์ด๋ž€?A๊ฐ€ B์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ  ์ตœ์ ํ™”ํ•˜๊ณ ,B๋Š” A๊ฐ€ ์ตœ์ ํ™”ํ•œ ๊ฒƒ์„ ๋ณด๊ณ  ๋˜ ์ตœ์ ํ™”ํ•œ๋‹ค.์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋‹ค๋ณด๋ฉด, A์™€ B๊ฐ€ ๋‘˜๋‹ค ์ด์ต์„ ์–ป์„ ์ˆ˜ ์—†๋Š” ๋‹จ๊ณ„์— ์ด๋ฅธ๋‹ค.  decoder๊ฐ€ generator, ๊ทธ๋ฆฌ๊ณ  encoder๊ฐ€ discriminator์ด ๋˜๋Š” ๊ตฌ์กฐ๋‹ค.์ฆ‰, ๋จผ์ € generator๊ฐ€ fake image๋ฅผ ๋งŒ๋“ค๊ณ discriminator๋Š” real image์™€ fake image๋ฅผ ๋ฐ›๊ณ  ๊ฐ๊ฐ์ด real(1)์ธ์ง€ ..

๐Ÿ“š Study/AI 2024.07.11

[๋”ฅ๋Ÿฌ๋‹๊ณผ ์„ค๊ณ„] VAE(Variational AutoEncoder)

๋ณธ ๊ธ€์€ ์•„๋ž˜ ์˜์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค.https://www.youtube.com/watch?v=GbCAwVVKaHY&list=PLQASD18hjBgyLqK3PgXZSp5FHmME7elWS&index=10  # Variational Autoencoders(VAE) AE ๊ฐ™์€ ๊ฒฝ์šฐ์—๋Š” encoder๊ฐ€ ์ค‘์š”ํ•œ ๋ฐ˜๋ฉด, VAE๋Š” decoder๊ฐ€ ๋” ์ค‘์š”ํ•˜๋‹ค.์ฆ‰, AE๋Š” ์ฐจ์›์„ ์ถ•์†Œํ•˜๋Š” ๊ฒŒ ์ค‘์š”ํ•˜๊ณ , VAE๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. encoder๊ฐ™์€ ๊ฒฝ์šฐ์—๋Š” ๋ฐ”๋กœ z๋ฅผ ๊ตฌํ•˜๋Š”๊ฒŒ ์•„๋‹ˆ๋ผํ‰๊ท  ฮผ์™€ ๋ถ„์‚ฐ ฯƒ๋ฅผ ๋ฝ‘์•„๋‚ธ ํ›„ ์ƒ˜ํ”Œ๋งํ•ด์„œ z๋ฅผ ๊ตฌํ•œ๋‹ค.๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ธฐ์„œ samplingํ•˜๋Š” ๊ณผ์ •์—์„œ Reparameterization Trick e์„ ์‚ฌ์šฉํ•ด์•ผ backpropagat..

๐Ÿ“š Study/AI 2024.07.10

[๋”ฅ๋Ÿฌ๋‹๊ณผ ์„ค๊ณ„] Autoencoder & Anomaly Detection

๋ณธ ๊ธ€์€ ๋‹ค์Œ ๊ฐ•์˜๋ฅผ ๋“ฃ๊ณ  ์ •๋ฆฌํ•˜์˜€์Šต๋‹ˆ๋‹ค.https://www.youtube.com/watch?v=9mf4maQU7UY&list=PLQASD18hjBgyLqK3PgXZSp5FHmME7elWS&index=7    # Autoencoder Autoencoder์€ input๊ณผ output์ด ๋™์ผํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด๊ณ ,Encoding์€ ๊ณ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์œผ๋กœ ์••์ถ•ํ•˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. (ex. ์œ„์˜ ๊ทธ๋ฆผ, 100์ฐจ์› -> 2์ฐจ์›)๊ทธ๋ฆฌ๊ณ  ์••์ถ•ํ•œ ๊ฒƒ์„ ๋‹ค์‹œ ์›๋ž˜์˜ input ํ˜•ํƒœ์˜ ํฌ๊ธฐ๋กœ ๋ณต์›ํ•˜๋Š” Decoding์ด ์žˆ๋‹ค. ์••์ถ•ํ•œ ๋ถ€๋ถ„์„ ์˜๋ฏธํ•˜๋Š” z๋Š” code, latent variable, feature, hidden representation ๋“ฑ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ถ€๋ฅธ๋‹ค. ๋ถ„๋ช… ๋ณธ ์ฐจ์›์„ ์ค„์—ฌ latent varia..

๐Ÿ“š Study/AI 2024.07.10

[๋”ฅ๋Ÿฌ๋‹๊ณผ ์„ค๊ณ„] Unsupervised Learning ๋น„์ง€๋„ํ•™์Šต๊ธฐ์ดˆ

๋ณธ ๊ฒŒ์‹œ๊ธ€์€ ๋‹ค์Œ ๊ฐ•์˜๋ฅผ ๋“ฃ๊ณ  ์ •๋ฆฌํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค.https://www.youtube.com/watch?v=V9HcvXliJmw&list=PLQASD18hjBgyLqK3PgXZSp5FHmME7elWS&index=6     # Basic Probability  supervised learning๊ณผ ๋‹ค๋ฅด๊ฒŒ unsupervised learning์—์„œ๋Š”'ํ™•๋ฅ '์— ๋Œ€ํ•œ ๊ฐœ๋…์ด ๋งŽ์ด ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ๋„˜์–ด๊ฐˆ ํ•„์š”๊ฐ€ ์žˆ๋‹ค.-(์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  ex.)p(x1,x2,x3)=p(x1|x2,x3)โˆ—p(x2|x3)โˆ—p(x3)-(์ „์ฒด ํ™•๋ฅ ์˜ ๋ฒ•์น™)p(y)=โˆ‘xp(x,y)=โˆ‘xp(y|x)p(x) ์ด๊ฑธ ์—ฐ์†์ ์ธ data์— ๋Œ€ํ•ด ์ž‘์—…์„ ํ–ˆ์„ ๋•Œ๊ฐ€ (Marginal..

๐Ÿ“š Study/AI 2024.07.10

[cs231n] Variational Autoencoders (VAE)

์ด์ „ PixelCNN ๊ฐ™์€ ๊ฒฝ์šฐ์—๋Š”, ํ™•๋ฅ  ๋ชจ๋ธ์ด ๊ณ„์‚ฐ ๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜์˜€๋Š”๋ฐ,VAE(Variational Autoencoders)๋Š” ํ™•๋ฅ  ๋ชจ๋ธ์ด ๊ณ„์‚ฐ ๋ถˆ๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜๋กœ ์ •์˜๊ฐ€ ๋œ๋‹ค.๋”ฐ๋ผ์„œ, Lower bound(ํ•˜ํ•œ์„ )์„ ๊ตฌํ•ด์„œ ๊ณ„์‚ฐ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์–ด์ฃผ๋Š”๊ฒŒ ๋ชฉ์ ์ด๋‹ค. VAE์— ๋Œ€ํ•ด ๋ฐ”๋กœ ๋“ค์–ด๊ฐ€๊ธฐ ์ „์—,Autoencoder์˜ ๊ณผ์ •์ธ Encoder์™€ Decoder์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์ž.   Autoencoder์ด๋ž€ input data x๋กœ๋ถ€ํ„ฐ ๋” ๋‚ฎ์€ ์ฐจ์›์˜ feature z๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.z๊ฐ€ x๋ณด๋‹ค ์ฐจ์›์ด ๋‚ฎ์€ ์ด์œ ๋Š”, ๊ธฐ์กด์˜ input ์ค‘์—์„œ 'ํ•ต์‹ฌ ์ •๋ณด'๋งŒ์„ ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.์ฆ‰, encoder๋ฅผ ํ†ตํ•ด input data์— Noise๋ผ๊ณ  ์ƒ๊ฐ๋˜๋Š” ๋ถ€๋ถ„์€ ์ œ๊ฑฐํ•˜๊ณ  ์‹ถ๋‹ค๋Š” ๋œป์ด๋‹ค. ์ •๋ฆฌํ•ด์„œ..

๐Ÿ“š Study/AI 2024.07.09