๐Ÿ“š Study/Paper Review

[Paper Review] Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians

์œฐ๊ฐฑ 2024. 6. 4. 15:32

2024๋…„ 3์›”์— arxiv์— ์˜ฌ๋ผ์˜จ ๋…ผ๋ฌธ์œผ๋กœ,

๊ธฐ์กด์— 3DGS์˜ ๊ฐ€์šฐ์‹œ์•ˆ ์ˆ˜ ํ˜น์€ ์ฐจ์›์„ ์ค„์ด๊ธฐ ์œ„ํ•œ ์‹œ๋„๋“ค(LightGaussian, Compact3DGS ๋“ฑ..)์˜ ํ•œ๊ณ„๋ฅผ ์–ธ๊ธ‰ํ•˜๋ฉฐ

์ƒˆ๋กœ์šด ์•„์ด๋””์–ด๋ฅผ ์ฃผ์žฅํ•œ๋‹ค๋Š” ์ ์—์„œ ํฅ๋ฏธ๋กœ์›Œ ์ฝ๊ฒŒ ๋˜์—ˆ๋‹ค.

 

 

Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians

In this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial

arxiv.org

 

GitHub - fatPeter/mini-splatting

Contribute to fatPeter/mini-splatting development by creating an account on GitHub.

github.com

 


1. Introduction

์ตœ๊ทผ 3DGS์˜ ๋“ฑ์žฅ์œผ๋กœ real-time rendering์ด ๊ฐ€๋Šฅํ•ด์ง€๋ฉด์„œ, 3D application์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ ธ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ชจ๋“  ์ •๋ณด๋ฅผ MLP์— ์ €์žฅํ•˜๋Š” ๊ธฐ์กด์˜ NeRF-based ๋ชจ๋ธ๊ณผ ๋‹ค๋ฅด๊ฒŒ

3DGS ๋ชจ๋ธ์€ scene์„ ๋””ํ…Œ์ผํ•˜๊ณ  ์‚ฌ์‹ค์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜๋ฐฑ๋งŒ๊ฐœ์˜ ํƒ€์›ํ˜•์˜ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์„ ํ•„์š”๋กœ ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค.

(Mip-NeRF360 dataset์—์„œ ๊ฐ scene์— ๋Œ€ํ•ด 100๋งŒ~600๋งŒ๊ฐœ ํ•„์š”)

 

์ด๋Š” ๋ชจ๋ธ์˜ ๋น„ํšจ์œจ์„ฑ์œผ๋กœ๊นŒ์ง€ ์ด๋ฃจ์–ด์กŒ๋Š”๋ฐ

๊ทธ ์ด์œ ๋Š”, ๋‘๋ฒˆ์งธ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด projected๋œ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์ด ๋ญ‰์น˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ–ˆ๊ณ  (overlapping, under-reconstruction)

์ด๋ ‡๊ฒŒ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์ด ๊ณ ๋ฅธ ๋ถ„ํฌ๋ฅผ ์ด๋ฃจ์ง€ ์•Š๊ณ  ์ค‘๊ฐ„์— ๋ญ‰์ณ์žˆ๋Š” ํ˜•ํƒœ๋Š” ๋ชจ๋ธ์˜ quality์™€ speed๋ฅผ ์ œํ•œํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ˆ˜๋ฅผ ์ œํ•œํ•จ์œผ๋กœ์จ scene์„ ๋” ๊ท ๋“ฑํ•˜๊ฒŒ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค.

 

์ตœ์†Œํ•œ์˜ ๊ฐ€์šฐ์‹œ์•ˆ ์ˆ˜๋กœ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ํ˜„์žฌ ์ง„ํ–‰ ์ค‘์ธ๋ฐ ์•„๋ž˜์™€ ๊ฐ™์€ ์—ฐ๊ตฌ๋“ค์ด ์„ ํ–‰๋˜์—ˆ๋‹ค.

1. Niedermayr et al.

: image gradient๋กœ๋ถ€ํ„ฐ ์–ป์€ parameter sensitivity์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ pruning

2. Lee et al. & LightGaussian

: Gaussian opacity์™€ scale์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ pruning

=> ๊ทธ๋Ÿฌ๋‚˜ ์œ„์™€ ๊ฐ™์€ direct pruning๋“ค์€ ์˜ค์ง storage compression์—๋งŒ ์ฃผ๋ชฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—
input Gaussian์˜ ๋น„ํšจ์œจ์ ์ธ spatial distribution์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค.

๊ทธ ๊ฒฐ๊ณผ๋กœ, ์ตœ์ (optimal)์ด ์•„๋‹Œ ์ฐจ์„ (suboptimal)์˜ simplication ์ˆ˜์ค€๋งŒ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ–ˆ๋‹ค.

 

๋˜ํ•œ, ๋Œ€๋ถ€๋ถ„์˜ 3D ๋ฐ์ดํ„ฐ simplification ์•Œ๊ณ ๋ฆฌ์ฆ˜์€

feature point์™€ geometric structure์„ ๋ณด์กดํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘์—ˆ๊ธฐ ๋•Œ๋ฌธ์—

3DGS์™€ ๊ฐ™์ด ๋ฐ€์ง‘๋œ optimizable parameter๋ฅผ ๊ฐ–์ถ˜ explicit representation์—๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š์•˜๋‹ค.

 


 

๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ Gaussian densification๊ณผ simplification์„ ์‚ฌ์šฉํ•˜์—ฌ

๊ธฐ์กด์— directํ•˜๊ฒŒ ๊ฐ€์šฐ์‹œ์•ˆ์„ ์‚ญ์ œํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์•„๋‹Œ, ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์˜ ๊ณต๊ฐ„์  ์œ„์น˜๋ฅผ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค.

  • Gaussian densification
    • blur split) blurring area์— ํ•ด๋‹นํ•˜๋Š” Gaussian๋“ค์„ splitํ•˜๋Š” ๋ฐฉ๋ฒ•
    • depth reinitialization) ์žฅ๋ฉด์„ ์žฌ์ดˆ๊ธฐํ™”ํ•˜๊ธฐ ์œ„ํ•ด merged depth point ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•
  • Gaussian simplication
    • intersection preserving) ๋ Œ๋”๋ง๋œ ์ด๋ฏธ์ง€์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ ๊ฐ€์šฐ์‹œ์•ˆ ๋ณด์กดํ•˜๋Š” ๋ฐฉ๋ฒ•
    • sampling) ์›๋ž˜ ๋ชจ๋ธ์˜ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ์™€ ๋ Œ๋”๋ง ํ’ˆ์งˆ์„ ๋ณด์กดํ•˜๋„๋ก ์„ค๊ณ„๋œ ์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•

์œ„์˜ ๋ฐฉ๋ฒ•๋“ค์„ ํ†ตํ•ด ๊ฐ€์šฐ์‹œ์•ˆ์˜ ๊ณต๊ฐ„ ๋ถ„ํฌ๋ฅผ ๋” ๊ท ์ผํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ๋งŒ๋“ค๊ฒŒ ๋˜์—ˆ๋‹ค.

 


4. Methodology

Gaussian์˜ ๊ณต๊ฐ„์  ์œ„์น˜(spatial distribution)์„ ์žฌ์กฐ์ •ํ•จ์œผ๋กœ์จ

๋ Œ๋”๋ง ํ€„๋ฆฌํ‹ฐ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ Gaussian์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ densification๊ณผ simplification์„ ์ œ์•ˆํ•œ๋‹ค.

4.1 Densification

Blur Split

์ด๋Š” ๋ Œ๋”๋ง๋œ ์ด๋ฏธ์ง€์— ์ƒ๊ธฐ๋Š” blur ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด๋‹ค.

๊ธฐ์กด์˜ 3DGS์—์„œ gradient๊ธฐ๋ฐ˜์˜ split์™€ clone๋ฐฉ์‹์€

์ƒ‰์ƒ ์ „ํ™˜์ด ๋ถ€๋“œ๋Ÿฌ์šด ๊ณณ์—์„œ๋Š” ์ž˜ ์ž‘๋™ํ•˜์ง€ ์•Š์•„์„œ optimization ๋‹จ๊ณ„์—์„œ oversized๋œ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์ด ๋‚จ์•„์žˆ์—ˆ๊ธฐ ๋•Œ๋ฌธ์—

์•„๋ž˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์ด projected ํ–ˆ์„ ๋•Œ ๋„ˆ๋ฌด ํฐ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์„ ์‚ญ์ œํ•ด์ฃผ์—ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜, ๋‹ค์Œ ๋ฐฉ์‹์€ ํŠน์ • ๊ตฌ์—ญ์— ์žˆ๋Š” ์ •๋ณด๊ฐ€ ๋ชจ๋‘ ์‚ฌ๋ผ์ง€๋Š” under-reconstruction ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ๊ณ 

์ด๋Š” ๋ Œ๋”๋ง๋œ ์ด๋ฏธ์ง€์—์„œ ๋ธ”๋Ÿฌ ํ˜„์ƒ์œผ๋กœ ์ด์–ด์กŒ๋‹ค

 

 

์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๊ฐ ์ด๋ฏธ์ง€์—์„œ ๋ธ”๋Ÿฌ ์˜์—ญ์ด ํฐ ๊ฐ€์šฐ์‹œ์•ˆ์„ ์‹๋ณ„ํ•˜๊ณ  ์ด๋ฅผ splitํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค.

under-reconstruction์˜ ์›์ธ์ด ๋˜๋Š” ๊ฐ€์šฐ์‹œ์•ˆ์„ ์ฐพ์•„๋‚ด๊ธฐ ์œ„ํ•ด ๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ตœ๋Œ€ ๊ธฐ์—ฌ ์˜์—ญ(maximum contribution area)์„ ์‚ฌ์šฉํ•œ๋‹ค.

(์ด๋Š” ํ•ด๋‹น ๊ฐ€์šฐ์‹œ์•ˆ์ด ์•ŒํŒŒ ๋ธ”๋ Œ๋”ฉ์—์„œ ๊ฐ€์žฅ ํฌ๊ฒŒ ๊ธฐ์—ฌํ•˜๋Š” ์˜์—ญ์„ ์˜๋ฏธํ•จ)

๊ทธ๋ฆฌ๊ณ  ์ด ๊ธฐ์—ฌ ์˜์—ญ์ด ํŠน์ • ์ž„๊ณ„๊ฐ’์„ ์ดˆ๊ณผํ•˜๋Š” ๊ฐ€์šฐ์‹œ์•ˆ์„ ๋ธ”๋Ÿฌ ๊ฐ€์šฐ์‹œ์•ˆ(Gblur)๋กœ ์‹๋ณ„ํ•œ๋‹ค.

 

ใ…‡