๐Ÿ“š Study/Paper Review 18

3DGS์—์„œ Covariance Matrix๋ฅผ ๊ตฌํ•  ๋•Œ transpose matrix๋ฅผ ๊ณฑํ•ด์ฃผ๋Š” ์ด์œ ?

3DGS ๋…ผ๋ฌธ์„ ์ฝ๋‹ค๊ฐ€ ์ˆ˜์‹์„ ๋ณด๊ณ  ๋“  ๊ถ๊ธˆ์ฆ์ด๋‹ค. ๋จผ์ €, world ์ขŒํ‘œ๊ณ„์—์„œ covariance matrix(๊ณต๋ถ„์‚ฐํ–‰๋ ฌ)์€,(1) ํฌ๊ธฐ๋ณ€ํ™˜ํ–‰๋ ฌ(scaling matrix) S์™€ (2) ํšŒ์ „๋ณ€ํ™˜ํ–‰๋ ฌ(rotation matrix) R์„ ์ด์šฉํ•ด์„œ โˆ‘=RSSTRT๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ๋˜ํ•œ, image ์ขŒํ‘œ๊ณ„์—์„œ ๊ณต๋ถ„์‚ฐํ–‰๋ ฌ์€,(1) world์ขŒํ‘œ๊ณ„์—์„œ camera์ขŒํ‘œ๊ณ„๋กœ ๋ณ€ํ™˜ํ•˜๋Š” viewing transform๊ณผ (2) camera์ขŒํ‘œ๊ณ„์—์„œ image์ขŒํ‘œ๊ณ„๋กœ ๋ณ€ํ™˜ํ•˜๋Š” projective transformation์— ๋Œ€ํ•œ ์•„ํ•€๊ทผ์‚ฌ์˜ Jacobian์„ ์ด์šฉํ•ด์„œ โ€ฒโˆ‘=JWโˆ‘WTJT์œ„์˜ ์‹์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค.  ๋‘ ์‹์„ ์‚ดํŽด๋ณด๋ฉด ์™œ ์ „์น˜ํ–‰๋ ฌ..

3DGS์—์„œ ํœด๋ฆฌ์Šคํ‹ฑ(heuristic)์˜ ์˜๋ฏธ?

Radsplat ๋…ผ๋ฌธ์„ ์ฝ๋‹ค๊ฐ€ 3DGS์˜ ํ•œ๊ณ„์ ์œผ๋กœ,ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฒ•์œผ๋กœ ์ธํ•ด optimizationํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ์–˜๊ธฐ๊ฐ€ ์žˆ์—ˆ๋‹ค.3DGS, however, suffers from a challenging optimization landscape and an unbounded model size.The number of Gaussian primitives is not known as a priori, and carefully-tuned merging, splitting, and pruning heuristics are required to acheive satisfactory results.The brittlenenss of these heuristics become particularly evident in..

NeRF ๊ฐ„๋‹จ ์„ค๋ช… with ์•ฝ๊ฐ„์˜ ์ฝ”๋“œ

[Paper Review] NeRF : Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV2020)NeRF ๋ชจ๋ธ์€ ๋งŽ์€ ๋ธ”๋กœ๊ทธ์™€ ์œ ํŠœ๋ธŒ ์ž๋ฃŒ๋ฅผ ์ฐพ์•„๋ณด๋ฉฐ ์ดํ•ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์ณค๋Š”๋ฐ ๋…ผ๋ฌธ์„ ์ •๋…ํ•˜๋‹ˆ ํ›จ์”ฌ ๋” ์ดํ•ด ์ •๋„๊ฐ€ ๊นŠ์–ด์ง„ ๊ธฐ๋ถ„์ด๋‹ค. ์ง์ ‘ ๊ธ€์„ ์จ๋ณด๋ฉฐ ์™„๋ฒฝํžˆ ๋‚ด ๊ฒƒ์œผ๋กœ ๋งŒ๋“ค์ž! ๋‹ค์Œ๊ณผ ๊ฐ™์€ dusruddl2.tistory.com โ†‘ ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ๋ฅผ ํ–ˆ์—ˆ๋Š”๋ฐ ์ •๋ง ๋‚ด๊ฐ€ NeRF ๋ชจ๋ธ์„ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๊ณ  ์žˆ๋‚˜? ์˜๋ฌธ์ด ๋“ค์–ด์„œ ์“ฐ๊ฒŒ ๋œ ํฌ์ŠคํŠธ ํ—ท๊ฐˆ๋ ธ๋˜ ๋ถ€๋ถ„ ์œ„์ฃผ๋กœ ๊ฐ„๋‹จ ๋ฆฌ๋ทฐํ•  ์˜ˆ์ •์ด๋‹ค. nerf/tiny_nerf.ipynb at master ยท bmild/nerfCode release for NeRF (Neural Radiance Fields..

[Paper Review] 3D Gaussian Splatting for Real-Time Radiance Field Rendering (SIGGRAPH 2023)

3DGS๋ฅผ ์ฒ˜์Œ ๊ณต๋ถ€ํ•˜์‹œ๋Š” ๋ถ„๋“ค์ด๋ผ๋ฉด xoft๋‹˜์˜ ๋ธ”๋กœ๊ทธ์™€ ์œ ํŠœ๋ธŒ ๊ฐ•์˜๋ฅผ ๋จผ์ € ๋“ค์œผ์‹œ๋Š”๊ฑธ ์ถ”์ฒœ๋“œ๋ฆฝ๋‹ˆ๋‹ค.์ „์ฒด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๋‹ค๋ค„์ฃผ์‹œ๊ธฐ ๋•Œ๋ฌธ์— ์ดํ•ด๊ฐ€ ์‰ฝ์Šต๋‹ˆ๋‹ค :) ๋ณธ ๊ธ€์€ ๋…ผ๋ฌธ์„ ์ˆœ์„œ๋Œ€๋กœ ์ฝ๊ณ  ์‹ถ์€ ๋ถ„์—๊ฒŒ ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•ฉ๋‹ˆ๋‹ค. (xoft๋‹˜์˜ ๊ธ€์„ ๋งŽ์ด ์ฐธ๊ณ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.)๋ถ€์กฑํ•œ ์ง€์‹์œผ๋กœ ์ž‘์„ฑํ•œ ๊ธ€์ด๊ธฐ ๋•Œ๋ฌธ์— ์ž˜๋ชป๋œ ๋ถ€๋ถ„์ด ์žˆ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งˆ์Œ๊ป ์ง€์ ํ•ด์ฃผ์„ธ์š”! 1. IntroductionMLP๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๋Š” NeRF ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋“ค์€ ๋ Œ๋”๋ง ์†๋„๊ฐ€ ๋„ˆ๋ฌด ๋А๋ ค ์‹ค์ œ ์‘์šฉ์—๋Š” ์ œํ•œ์ ์ด์—ˆ๋Š”๋ฐ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” 3DGS๋ฅผ ํ†ตํ•ด(1) training ์‹œ๊ฐ„๋„ ์ด์ „ ๋ฐฉ๋ฒ•์ฒ˜๋Ÿผ ๋น ๋ฅด๊ฒŒ ๊ทธ๋ฆฌ๊ณ  (2) ํ€„๋ฆฌํ‹ฐ๋„ ์œ ์ง€ํ•˜๋ฉด์„œ (3) ๋ Œ๋”๋ง ์†๋„๋ฅผ ๋งค์šฐ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค.(real-time, high-qual..

3DGS์˜ tile rasterizer์—์„œ ๊ฒน์น˜๋Š” tile๊ฐœ์ˆ˜์— ๋”ฐ๋ผ ์ธ์Šคํ„ด์Šคํ™”ํ•˜๋Š” ์ด์œ ?

3DGS์˜ tile rasterizer ๋ถ€๋ถ„์„ ์ฝ๋‹ค๊ฐ€ ์™œ ๊ทธ๋ ‡์ง€?ํ•˜๋Š” ์ƒ๊ฐ์„ ๋“ค๊ฒŒ ํ•œ ๋ถ€๋ถ„์ด ์žˆ์—ˆ๋‹ค. We then instantiate each Gaussian according to the number of tiles they overlap and assign each instance a key that combines view space depth and tile ID. ์™œ ๊ฐ€์šฐ์‹œ์•ˆ์„ ๊ทธ๋“ค์ด ๊ฒน์น˜๋Š” ํƒ€์ผ ์ˆ˜๋กœ ์ธ์Šคํ„ด์Šคํ™”ํ•˜๋Š” ๊ฒƒ์ผ๊นŒ? ์ด๋Š” ํ•ด๋‹น ๊ฐ€์šฐ์‹œ์•ˆ์ด ์ด๋ฏธ์ง€์— ์–ด๋А์ •๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ํ•œ ์ด๋ฏธ์ง€๊ฐ€ ๋…ผ๋ฌธ์ฒ˜๋Ÿผ 16x16 ํƒ€์ผ๋กœ ๋ถ„ํ• ๋˜์–ด ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด์ž. ์ด๋ฏธ์ง€์— projection๋œ 2D ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์„ ๊ณ ๋ คํ•ด๋ณผ ๋•Œ, ๊ฐ€์šฐ์‹œ์•ˆ์ด ๊ฒน์น˜๋Š” ํƒ€์ผ ์ˆ˜๊ฐ€ ๋งŽ์„ ๊ฒฝ์šฐ -..

3DGS์—์„œ ๋ทฐ ์ ˆ๋‘์ฒด view frustum์ด๋ž€?

3DGS์—์„œ Cull 3D Gaussian์„ ํ•  ๋•Œ,view frustum๊ณผ์˜ ๊ต์ฐจ๊ฐ€ 99%์ธ ๊ฐ€์šฐ์‹œ์•ˆ๋งŒ์„ ๋‚จ๊ธฐ๊ณ  ๋‚˜๋จธ์ง€๋Š” ์ œ๊ฑฐํ•œ๋‹ค๊ณ  ํ–ˆ๋‹ค.6 FAST DIFFERENTIABLE RASTERIZER FOR GAUSSIANSwe only keep Gaussians with a 99% confidence interval intersecting the view frustum ๋„๋Œ€์ฒด ๋ทฐ ์ ˆ๋‘์ฒด๊ฐ€ ๋ฌด์—‡์ธ์ง€ ์ดํ•ดํ•ด๋ณด๋„๋ก ํ•˜์ž ๋ทฐ ์ ˆ๋‘์ฒด(view frustum)์ด๋ž€?ํ”ผ๋ผ๋ฏธ๋“œ ๊ฐ™์€ ๋ชจ์–‘์˜ ์œ—๋ถ€๋ถ„์„ ๋ฐ‘๋ฉด์— ๋ณ‘๋ ฌ๋กœ ์ž˜๋ผ๋‚ธ ์ž…์ฒด ํ˜•์ƒ์ฆ‰, ์นด๋ฉ”๋ผ๊ฐ€ ๋ณผ ์ˆ˜ ์žˆ๋Š” ์˜์—ญ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ์ข‹๋‹ค.  ์นด๋ฉ”๋ผ์™€ ๋ง‰๋Œ€๊ธฐ๋ฅผ ์„ค๋ช…ํ•œ ์˜ˆ์‹œ์ธ ์•„๋ž˜์˜ 3๊ฐ€์ง€ ๊ฒฝ์šฐ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.1) ์นด๋ฉ”๋ผ ๋ฐ”๋กœ ์•ž์— ๋ง‰๋Œ€๊ธฐ๊ฐ€ ์žˆ๋‹ค๋ฉด -> ์นด๋ฉ”๋ผ์—๋Š” ์ ๋งŒ์ด ๋ณด์ผ ๊ฒƒ์ด๋‹ค..

3DGS์—์„œ ์•ŒํŒŒ ๋ธ”๋ Œ๋”ฉ ฮฑ-blending ์ด๋ž€?

3DGS ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ฮฑ-blending๋„๋Œ€์ฒด ์ด ๋…ผ๋ฌธ์—์„œ ์˜๋ฏธํ•˜๋Š” ์•ŒํŒŒ ๋ธ”๋ Œ๋”ฉ์ด ๋ฌด์—‡์ธ์ง€ ๋‚ด ์ƒ๊ฐ์„ ์ •๋ฆฌํ•ด๋ณด๊ฒ ๋‹ค. ์•ŒํŒŒ ๋ธ”๋ Œ๋”ฉ์ด๋ž€?์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋“ค์„ ํ•ฉ์„ฑํ•  ๋•Œ, ํˆฌ๋ช…๋„(ฮฑ)๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ํ˜ผํ•ฉํ•˜๋Š” ๊ธฐ์ˆ ์ด๋‹ค.์•„๋ž˜ ์‚ฌ์ง„๊ณผ ๊ฐ™์ด ฮฑ๊ฐ’์ด ์ž‘์œผ๋ฉด ๋” ํˆฌ๋ช…ํ•ด์ง€๊ณ , ฮฑ๊ฐ’์ด ์ปค์ง€๋ฉด ๋” ๋ถˆํˆฌ๋ช…ํ•ด์ง„๋‹ค. ๊ธฐ์กด์—๋Š” ์ด๋ฏธ์ง€๋ฅผ ์˜ค์ง RGB 3๊ฐ€์ง€๋กœ ํ‘œํ˜„์„ ํ–ˆ๋‹ค๋ฉด,์ด๋ฏธ์ง€์˜ ํˆฌ๋ช…ํ•œ ํšจ๊ณผ๋ฅผ ๊ตฌํ˜„ํ•˜๊ฑฐ๋‚˜ (ex. ๋กœ๊ณ  ์ด๋ฏธ์ง€์˜ ๋ฐฐ๊ฒฝ ํˆฌ๋ช…ํ•˜๊ฒŒ or ๊ทธ๋ฆผ์ž ํšจ๊ณผ)์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•  ๋•Œ ๊ฐ ํ”ฝ์…€์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์ œ์–ดํ•  ๋•Œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ดRGB์™ธ์— ํˆฌ๋ช…๋„๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ RGBA 4๊ฐ€์ง€๋กœ ํ‘œํ˜„์„ ํ•œ๋‹ค.  ์ด ๊ธฐ์ˆ ์„ 3DGS ๋ชจ๋ธ์—๋Š” ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•œ๋‹ค๋Š”๊ฑธ๊นŒ? 3DGS ๋ชจ๋ธ์€ SFM points๋ฅผ ํ†ตํ•ด 3D Gaussian์„ ๋งŒ๋“  ํ›„,proj..

[Paper Review] NeRF : Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV2020)

NeRF ๋ชจ๋ธ์€ ๋งŽ์€ ๋ธ”๋กœ๊ทธ์™€ ์œ ํŠœ๋ธŒ ์ž๋ฃŒ๋ฅผ ์ฐพ์•„๋ณด๋ฉฐ ์ดํ•ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์ณค๋Š”๋ฐ ๋…ผ๋ฌธ์„ ์ •๋…ํ•˜๋‹ˆ ํ›จ์”ฌ ๋” ์ดํ•ด ์ •๋„๊ฐ€ ๊นŠ์–ด์ง„ ๊ธฐ๋ถ„์ด๋‹ค. ์ง์ ‘ ๊ธ€์„ ์จ๋ณด๋ฉฐ ์™„๋ฒฝํžˆ ๋‚ด ๊ฒƒ์œผ๋กœ ๋งŒ๋“ค์ž! ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ˆœ์„œ๋กœ ๊ธ€์ด ์ง„ํ–‰๋œ๋‹ค. 0. [Abstract] NeRF ๊ฐ„๋‹จ ์„ค๋ช… 1. [Background] Explicit Representation vs Implicit Representation 2. Neural Radiance Field Scene Representation 2.1 Overview 2.2 MLP Network 3. Volume Rendering with Radiance Field 3.1 [Equation 1] The expected color of the input ray. 3.2 [ Equation 2]..